

A Hierarchical Analysis of Genetic Differentiation in a Montane Leaf Beetle Chrysomela aeneicollis (Coleoptera: Chrysomelidae) Author(s): Nathan Egan Rank Source: Evolution, Vol. 46, No. 4 (Aug., 1992), pp. 1097-1111 Published by: Society for the Study of Evolution Stable URL: <u>http://www.jstor.org/stable/2409759</u> Accessed: 01/02/2010 19:13

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ssevol.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to Evolution.

A HIERARCHICAL ANALYSIS OF GENETIC DIFFERENTIATION IN A MONTANE LEAF BEETLE *CHRYSOMELA AENEICOLLIS* (COLEOPTERA: CHRYSOMELIDAE)

NATHAN EGAN RANK¹

Department of Zoology, University of California, Davis, CA 95616 USA

Abstract.—Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation $(F_{sr} = 0.043)$ among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four ($F_{ST} = 0.412$), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.

Key words. – Allozymes, Chrysomela aeneicollis, F-statistics, gene flow, genetic differentiation, insect population structure, natural selection, phosphoglucose isomerase.

Received February 4, 1991. Accepted November 20, 1991.

All species consist of populations that vary in size and degree of isolation from other populations. Local population sizes, migration rates, and the patterns of matings within a population all affect a species' population structure (Hartl and Clark, 1989; McCauley and Eanes, 1987; Slatkin, 1987). In many cases, local environmental variation causes natural selection to operate differently among local populations, and populations may differ genetically in response to this natural selection. Even in the absence of selection, genetic drift among small-sized populations increases their likelihood of becoming genetically differentiated. On the other hand, gene flow tends to make populations more genetically homogeneous (Slatkin, 1987). To measure the genetic structure of populations, Wright (1978) proposed that studies should use a hierarchical sampling design that corresponds to spatial subdivisions of natural populations. For ex-

¹ Present address: Institute für terrestrische ökologie, ETH-Zürich, Grabenstr. 3, CH-8952 Schlieren, SWIT-ZERLAND. Fax 41-1-731-0783. ample, if a herbivorous insect lives on trees that grow in distinct patches separated by geographical barriers, a study of that insect's population structure should include samples from individual trees from several host-tree patches. The advantage of a hierarchical study is that one can distinguish evolutionary processes such as isolation due to geographic barriers, isolation by distance, and isolation resulting from the organism's behavior itself. Until recently however, few studies have attempted to measure population structure in this way.

Willow leaf beetles (Family Chrysomelidae) occur on willow shrubs or trees that commonly grow in separated patches of boggy or moist habitat. These beetles feed on the same host species as adults and as larvae, and they usually overwinter below their host tree or under the bark of dead branches (Brown, 1956; Raupp and Denno, 1983; Rowell-Rahier, 1984; Pasteels et al., 1988; Smiley and Rank, 1986). Although they can fly, most willow leaf beetles do so rarely (Brown, 1956).

Because of their low vagility and because

FIG. 1. Maps of the localities. *Top left*—locations of the three drainages in the eastern Sierra Nevada. The areas shaded in black indicate regions higher than 3500 meters. *Top right*—locations of the three localities in the Rock Creek drainage. *Bottom left*—locations of the five localities near South Lake in the Bishop Creek drainage. *Bottom right*—locations of the seven localities in the Big Pine Creek drainage.

they occur in distinct patches of host plants, one may predict that willow leaf beetles have a subdivided population structure. This subdivision may enhance their potential for local adaptation to small scale environmental variation. Indeed, an electrophoretic study of a willow leaf beetle, Plagiodera versicolor, which was introduced to North America at the turn of the century, found significant differentiation among patches of willows separated by several kilometers (McCauley et al., 1988). This study also demonstrated significant variation among patches in average relatedness of individuals within larval feeding groups, which suggests that genetic differentiation in average relatedness has occurred.

In this study, I used gel electrophoresis to quantify the population structure of a willow leaf beetle, *Chrysomela aeneicollis*, which occurs at high elevations in the eastern Sierra Nevada of central California (Smiley and Rank, 1986). *Chrysomela aeneicollis* is native to western North America from the Yukon to California (Brown, 1956). At this southern extreme of its range, C. aeneicollis populations are potentially subdivided at several levels. First, populations are localized in isolated drainages that are separated by high-elevation ridges. Second, C. aeneicollis populations occur on separated patches of willows in bogs, on talus slopes, or along streams. Finally, within these patches, the willows grow as distinct shrubs supporting populations of C. aeneicollis larvae and adults. Thus, for this species, which has a limited vagility, physical barriers and the patchiness of its host plants may favor genetic subdivision at each spatial scale. I tested this hypothesis by sampling C. aeneicollis populations hierarchically 1) among isolated drainages, 2) among patches of willows within a drainage (localities), and 3) among individual willows within a locality.

MATERIALS AND METHODS

Collection. – Chrysomela aeneicollis adults from the previous year can be found in May and June, but adults from the present generation do not emerge from their pupae until late August or early September. For this study, I collected newly emerged adult beetles on September 3–7, 1988. The beetles were collected along three drainages: Big Pine Creek (37°7'N/118°29'W), Bishop Creek (37°11'N/118°32'W, populations sampled near South Lake), and Rock Creek (37°25'N/118°44'W). These drainages are isolated by barren ridges that constitute part of the Sierra crest. Big Pine Creek is separated from Bishop Creek by about 10 kilometers and one ridge, but populations in both of these drainages are separated from the Rock Creek populations by several ridges and about 40 kilometers. I sampled beetles in a stepping stone fashion within each drainage at localities that were 0.3 to 5 kilometers apart (Fig. 1). In each locality, I sampled beetles from two to eight willows separated by 2 to 150 meters (Table 1). Because these willows are shrubs, all of the branches could be sampled. All of the beetles were collected from a single, salicin-rich willow species, S. orestera, except for those collected from six S. boothi individuals at locality BPf. The two willow species grew together at this locality.

Electrophoresis. – After collection, I brought the beetles to the University of Cal-

Locality	Trees	N	Elevation m	Distance m	Site description
BPCa	6	27.2	3182	94	Large clones on talus slope
BPCb	3	15.3	3268	13	Bog by 4th lake
BPCc	3	27.3	3219	29	Open bog
BPCd	7	31.9	3127	32	Talus and bog
BPCe	3	31.7	3106	13	At edge of shaded pond
BPCf	8	28.8	2974	31	Bog and pine woodland
BPCg	4	13.0	2877	19	Shaded bog
RCa	3	12.3	3365	68	Stream-side clones
RCb	7	20.9	3264	90	Stream-side in steep canyon
RCc	3	16.3	3064	34	Bog in campground
SLa	3	51.0	3170	6	Shaded bog
SLb	3	45.0	3194	8	Shaded bog
SLc	2	38.5	3219	10	Shaded bog
SLd	2	21.0	3005	2	At edge of open pond
SLe	4	23.8	2883	74	Open boggy area near road

TABLE 1. Description of localities. N refers to the average sample size per willow, and the distance is the average distance between any two willows at the site.

ifornia, Davis for long-term storage at -80° C. I prepared the samples for electrophoresis by homogenizing them with a glass rod in 0.1 ml of distilled water in a microcentrifuge tube. Electrophoresis was conducted according to the methods outlined in Harris and Hopkinson (1976), using a 12.5% potato starch solution (Sigma Chemical Co., St. Louis, Mo.). To determine which loci were polymorphic, I first screened C. aeneicollis (10 individuals per drainage) for polymorphism among 22 enzyme loci: 6-phosphogluconate dehydrogenase (6pgd; E.C. 1.1.1.49), aconitase (acon-1; E.C. 4.2.1.3), adenvlate kinase (ak-1; E.C. 3.5.4.4), alcohol dehydrogenase (adh-1, adh-2, adh-3; E.C. 1.1.1.1), alpha-gpd (alphaglycerophosphate dehydrogenase E.C. 1.1.1.8.), aspartate aminotransferase (aat-1, aat-2; E.C. 2.6.1.1), creatine kinase (ck-1; E.C. 2.7.3.2), esterase (est-2; nonspecific), isocitrate dehydrogenase (idh-1, idh-2; E.C. 1.1.1.42), malate dehydrogenase (mdh-1, mdh-2; E.C. 1.1.1.37), malic enzyme (me-1; E.C. 1.1.1.40), mannose-6-phosphate isomerase (mpi-1; 5.3.1.8), peptidase (pep-b], pep-c, pep-d; uncertain E.C. assignment, peptidase nomenclature based on Murphy et al., 1990), phosphoglucomutase (pgm-1; E.C. 5.4.2.2), phosphoglucose isomerase (pgi-1; E.C. 5.3.1.9), superoxide dismutase (sod-1; E.C. 1.15.1.1). Of these 22 loci, acon-1, ak-1, idh-2, me-1, mp-1, pgi-1, and pgm-1 showed polymorphism. I subsequently dropped *acon-1* and *me-1* because the bands were not clearly readable for scoring of putative genotypes. Thus, five loci were used in the complete survey.

For these five loci, I used two buffer systems. For *ak-1*, *idh-2*, and *mpi-1*, I used a continuous tris-citrate buffer (pH 8.0), run at 100 mA for four hours. I added about 5 mg of NADP to the gel buffer just before pouring the gel. For *pgi-1* and *pgm-1*, I used a discontinuous tris-citrate buffer (pH 7.1) run at 75 mA for six hours (buffer recipe in Ayala et al., 1972). Agar overlays were used in staining all of the enzymes except for *idh-2*. For all five loci, I reran individuals to homologize alleles and to resolve scores that had been questionable on the first run.

Analyses. – I used the BIOSYS (Swofford and Selander, 1981; version 1.6 for personal computers) program on single-individual genotypic data to obtain allele frequencies and to test for significant deviations from Hardy-Weinberg equilibrium for each willow. Before testing for HWE, I pooled the genotypes into homozygotes for the most common allele, heterozygotes between the most common allele and other alleles, and homozygotes and heterozygotes for the other alleles. I used the exact test option in BIOSYS to obtain exact probabilities of the deviations, and I report the direct count average heterozygosities and their standard errors given in BIOSYS's step VARIAB.

To analyze differentiation among subpopulations, I used Weir and Cockerham's (1984) modification of Wright's *F*-statistics

(Wright, 1978). The F-statistics are calculated from the genotypic frequencies at each locus. $F_{\rm IS}$ measures the degree of nonrandom mating within a subpopulation. It takes a positive value when the observed heterozygosity is less than the expected heterozygosity, or a negative value when there is a heterozygote excess. F_{ST} measures the relative fixation of alternate alleles in different subpopulations by comparing the average of the subpopulation heterzygosities to the total heterozygosity expected under random mating. The magnitude of F_{ST} therefore depends on the amount of among-subpopulation divergence in allele frequencies (Wright, 1978; Hartl and Clark, 1989). The F-statistics are related by the equation (1 - 1) $F_{\rm IS}$) = (1 - $F_{\rm IT}$)(1 - $F_{\rm ST}$).

In a multiallele system, the estimates from each allele are weighted by their frequencies to obtain the estimate for each locus. A jackknife procedure is used to combine the information across alleles within a locus and across loci and generate a mean and a standard error for the *F*-statistics. Because Weir and Cockerham's (1984) modification of Wright's *F*-statistics uses estimators that are corrected for sample size differences, F_{ST} may assume slightly negative values in their formulation, which indicates a lack of any differentiation among subpopulations (Slatkin and Barton, 1989).

In this paper, I calculated $F_{\rm ST}$ separately at each level in the spatial hierarchy. At the lowest level, $F_{\rm ST}$ was calculated using the genotype frequencies on each willow within a locality, and this calculation was repeated 15 times reflecting the total number of localities sampled (Table 1). I refer to this level as F_{WL} denoting differentiation among willows in a locality. Then I calculated an $F_{\rm ST}$ among localities within each drainage $(F_{\rm LD})$, using the genotype frequencies for each locality. Three values were calculated at this level, one for each drainage. Finally, I calculated a single $F_{\rm ST}$ from the overall genotypic frequencies in each drainage, which I refer to as F_{DT} . This type of notation was used by Wright (1978) and McCauley et al. (1988). I have calculated the F statistics for each level in the spatial hierarchy separately because the individual measurements show more clearly how the patterns of differentiation vary at different locations.

To determine the statistical significance of the genetic variation, I have taken two approaches: G tests for heterogeneity of allele frequencies at each locus and *t*-tests of the jackknifed F_{ST} estimates. For the G tests, I pooled the rarer alleles into the next most common allelic classes when the expected values in any cell were less than 5. To test whether the jackknifed estimates were significantly different from zero, I used simple t-tests (cf. McCauley et al., 1988). Because $F_{\rm IS}$ and $F_{\rm IT}$ can take both negative and positive values, I evaluated their t-values with two-tailed probabilities, but I used onetailed tests to determine the significance of $F_{\rm ST}$. Additionally, I used the sequential Bonferroni procedure to control for Type I error resulting from multiple significance tests (Rice, 1989). Finally, I reported negative $F_{\rm ST}$ values as zero. The lowest value I obtained at an individual locus was -0.072, and for a jackknife estimate the lowest value was -0.012.

Another way of describing the geographical pattern of allele frequencies is to use principal components analysis. One can plot the principal components against other geographic variables (cf. Langercrantz and Ryman, 1990). In this analysis, I used the angular transformed allele frequencies on each willow. I included all alleles that had an overall frequency greater than 0.09, resulting in a total of 11 variables: ak-1 allele 1, idh-2 alleles 1, 3, 4, mpi-1 alleles 1, 2, pgi-1 alleles 1, 4, and pgm-1 alleles 1, 4, 6. I then plotted the first versus the second principal component and elevation versus the first principal component separately for each drainage.

RESULTS

In most cases, the loci that were polymorphic in the original screening were polymorphic on each willow (Appendix 1). However, at the level of drainages, populations in Rock Creek and South lake possessed alleles at *idh-2* (allele 2), *mpi-1* (allele 3), and *pgi-1* (alleles 2, 3) that were absent from Big Pine Creek, and the Big Pine Creek and South Lake populations possessed four alleles at *pgm-1* (alleles 2, 3, 5, 7) that were absent from Rock Creek. Additionally, at *pgi-1*, the most common allele at Big Pine Creek was quite rare at Rock Creek and

			Locus		
F-statistic	ak-1	idh-2	mpi-1	pgi-1	pgm-1
FID (BPC)	0.008	0.014***	0.011*	0.012**	0.011**
F_{ID} (RC)	0.022	0.007	0.018	0.016	0.000
$F_{\rm LD}$ (SL)	0.000	0.047***	0.016**	0.058**	0.026***
$F_{\rm DT}$	0.016***	0.030***	0.040***	0.412***	0.067***

TABLE 2. F_{ST} values among drainages (F_{DT}) and among localities within each drainage (F_{LD}). Table-wide significance levels obtained from G tests for allele frequency heterogeneity as described in the text.

* P < 0.05, ** P < 0.01, *** P < 0.005.

conversely, the most common allele at Rock Creek was rare at Big Pine Creek. The South Lake populations had intermediate frequencies of the two alleles at *pgi-1* (Appendix 1).

There were no pervasive departures from HWE in the sample. After the sequential Bonferroni adjustment of the *P* values for the number of tests made at each locus, only two of the deviations from HWE were statistically significant. Both of these deviations occurred on willow RV2 at locality SLe. At *pgm-1*, there was a heterozygote excess (Fi = -0.82, P < 0.001), while at *idh-2*, there was a deficiency of heterozygotes (Fi = 0.32, P < 0.001).

If a population has experienced a prolonged bottleneck, its average heterozygosity should be lower than others (Hartl and Clark, 1989). Average heterozygosities in this study were very similar for Big Pine Creek (0.430 \pm 0.084) and for South Lake (0.430 \pm 0.097), but they were somewhat smaller for Rock Creek (0.322 \pm 0.099). Much of this difference results from the greatly reduced heterozygosity at *pgi-1* (*H* = 0.078) in Rock Creek relative to Big Pine Creek (*H* = 0.322) and South Lake (*H* = 0.431).

Among-Drainage Differentiation. — The frequencies at each locus were significantly heterogeneous among drainages (Table 2). The $F_{\rm DT}$ values for four of the five loci agree reasonably well, and the degree of polymorphism at the locus probably accounts for some of the variation in $F_{\rm DT}$ (Slatkin and Barton, 1989). However, the value of $F_{\rm DT}$ for pgi-1 is nearly 10 times greater than any of the other four loci. This discrepancy suggests that natural selection is acting on one or several of the alleles at pgi-1 at the level of drainages (Slatkin, 1987). Because differentiation at pgi-1 appears to be influ-

enced by natural selection, I made two jackknife estimates for $F_{\rm DT}$, one that included *pgi-1* and one without *pgi-1*. In both cases, the overall among-drainage differentiation was significant (Table 3). However, when *pgi-1* is included in the jackknife estimate the standard error is proportionately greater, and the significance level is reduced to some degree.

Among-Locality Differentiation. – Localities within a drainage were genetically differentiated as well (Tables 2 and 3). The loci within each drainage are in basic agreement, except for the zero estimates of F_{LD} at ak-1in South Lake and at *pgm-1* at Rock Creek. It is worth noting that ak-1 shows the least polymorphism at South Lake and pgm-1 shows much less polymorphism at Rock Creek than at the other two drainages (Appendix 1). In all three drainages, the jackknife estimates of $F_{\rm LD}$ were lower than $F_{\rm DT}$, indicating that the ridges indeed act as barriers to gene flow. Nevertheless, the jackknife estimate of F_{LD} was substantially greater in South Lake than in the other two drainages.

Among-Tree Differentiation. — The estimates for F_{WL} vary considerably among localities (Tables 4 and 5). At this level, there is greater variability in the estimates across

TABLE 3. Jackknife estimates of *C. aeneicollis* genetic differentiation among localities within each drainage and among drainages. Significance levels were determined by *t*-tests.

F-statistic	F	SE	P
F _{DT} with pgi-1	0.135	0.041	*
F _{DT} without pgi-1	0.043	0.005	**
$F_{\rm LD}$ (BPC)	0.012	0.001	***
F_{LD} (RC)	0.010	0.002	**
$F_{\rm LD}$ (SL)	0.037	0.004	**

_

Table-wide significance levels, * P < 0.05, ** P < 0.01, *** P < 0.001.

			Locus		
Locality	ak-1 F _{WL}	idh-2 F _{WL}	mpi-1 F _{WL}	pgi-1 F _{WL}	pgm-1 F _{WL}
BPCa	0.000	0.001	0.000	0.000	0.000
BPCb	0.066	0.253**	0.000	0.068	0.107
BPCc	0.033	0.005	0.000	0.036	0.133***
BPCd	0.018	0.038**	0.051**	0.049**	0.015
BPCe	0.000	0.001	0.000	0.100***	0.014
BPCf	0.009	0.033	0.018	0.128***	0.027
BPCg	0.042	0.000	0.000	0.000	0.004
RCa	0.000	0.045	0.001	0.063	0.000
RCb	0.167***	0.049*	0.025	0.051	0.161***
RCc	0.102	0.036	0.249**	_	0.268***
SLa	0.015	0.030*	0.000	0.097***	0.010
SLb	0.067**	0.104***	0.016	0.018	0.061***
SLc	0.005	0.008	0.000	0.004	0.022
SLd	0.023	0.000	0.000	0.000	0.000
SLe	0.980	0.386*	0.181	0.367***	0.397

TABLE 4. F_{WL} values among trees in a locality for each locus. Column-wide significances were determined separately for each locus after conducting G tests of allele frequency heterogeneity as described in the text. Dashes indicate that a locus was not polymorphic at that locality.

* P < 0.05, ** P < 0.01, *** P < 0.001.

loci, probably resulting from relatively greater sampling error. Despite this variability, the $F_{\rm WL}$ values for individual loci were generally consistently high or low within a population and usually if there was significant differentiation at any one locus, other loci indicated significant differentiation as well (Table 4). $F_{\rm WL}$ was greatest at locality SLe, but the high value for ak-1 at SLe resulted from its fixation at several willows.

TABLE 5. Jackknife estimates of F_{IW} , the inbreeding coefficient, and F_{WL} among willows within a locality. All estimates are based on five loci except for RCc, which was based on four loci because pgi-1 was fixed for one allele. Statistical significance was determined by *t*-tests.

Locality	F _{IW} SE	F _{WL} SE
BPCa	0.000 ± 0.024	0.000 ± 0.001
BPCb	0.002 ± 0.034	$0.113 \pm 0.022*$
BPCc	-0.047 ± 0.034	0.043 ± 0.016
BPCd	-0.012 ± 0.015	0.036 ± 0.003 **
BPCe	0.015 ± 0.009	0.015 ± 0.008
BPCf	-0.030 ± 0.007	$0.039 \pm 0.007*$
BPCg	-0.005 ± 0.018	0.000 ± 0.004
RCa	-0.108 ± 0.028	0.023 ± 0.008
RCb	0.033 ± 0.025	$0.079 \pm 0.015*$
RCc	0.015 ± 0.064	0.165 ± 0.041^{1}
SLa	-0.064 ± 0.018	0.034 ± 0.009^{1}
SLb	$-0.097 \pm 0.013*$	0.016 ± 0.005
SLc	-0.053 ± 0.026	0.009 ± 0.002^{1}
SLd	-0.153 ± 0.058	0.000 ± 0.002
SLe	0.024 ± 0.080	0.427 ± 0.048 **
1 P < 0.1, *	P < 0.05, ** P < 0.01.	

The jackknife estimates of F_{WL} indicated significant substructuring at the 95% column-wide significance level for 4 of the 15 localities sampled, with significant values ranging from 0.039 to 0.427. Additionally, another three localities were significantly differentiated at the 90% significance level (Table 5). In four cases, (BPb, BPf, RCb, RCc), the among-willow differentiation occurred in localities where the sample size on at least one tree was small (N < 10), and the highest value of F_{WL} occurred at locality SLe, where the subpopulations were clearly out of HWE. On the other hand, at locality BPd, where $F_{\rm WL}$ was also significant, sample sizes were consistently large. Finally, F_{WL} was not related to the average distance between willows within a locality (m = 0.001, r = 0.35, P = 0.20, N = 15 localities).

Neither the jackknifed estimates of F_{IS} at the drainage level (F_{ID}) nor the estimates for localities within a drainage (F_{IL}) were significantly different from zero. Additionally, at the level of individual willows (F_{IW}), most of the values were not significant (Table 5). This result suggests that there was no substantial genetic structuring within populations, and it corresponds with the finding that most of the individual populations were in HWE. For the one locality where F_{IW} was significant (locality SLb), it was negative (Table 5). It seems clear that *C. aeneicollis* populations are not generally inbred and

FIG. 2. Scatterplot of the first (PC1) and second (PC2) principal components of the allele frequencies at the five polymorphic loci. Each point represents a different willow. Hollow circles refer to BP populations, filled triangles refer to SL populations, and filled circles refer to the RC populations. The percentages refer to the proportion of the variance explained by the principal component.

there is no Wahlund effect resulting from genetic structure below the lowest level of the sampling design.

In the principal components analysis, the first principal component (PC1) explained 47% of the variation in the 11 allele frequencies, and the second principal component (PC2) explained an additional 15% of the variation. However, a plot of PC1 versus PC2 shows that PC1 accounts for much of the variation among drainages (Fig. 2). The drainages differ in their PC1 scores (Nested ANOVA with drainages and localities as random factors $F_{2,14} = 102.8$, P = 0.0001), but PC1 also varied significantly among localities within a drainage ($F_{12,46} =$ 2.0, P = 0.04). PC1 is most closely correlated to the two most common alleles at pgi-1 (r = 0.41 for allele 1 and -0.42 for allele 2). Nevertheless, it is also fairly highly correlated to alleles 1 and 6 at pgm-1 (r =-0.41 and 0.35, respectively) and to allele 1 at mpi-1 (r = -0.31). Of the alleles included in the PC analysis, these five differ the most in frequency among the drainages.

There was a linear relationship between PC1 and elevation in drainage SL, but not in the other two drainages (Fig. 3). Linear

FIG. 3. Plot of PC1 versus elevation. Each point represents the least-squares mean for that locality and the error bars represent the standard error. The symbols refer to the different drainages as in Figure 2.

regressions showed that there was no significant relationship in BP ($m = 0.001 \pm 0.001, r^2 = 0.05, P = 0.22$) or in RC ($m = 0.001 \pm 0.002, r^2 = 0.01, P = 0.70$), but the relationship between elevation and PC1 was highly significant in SL ($m = -0.007 \pm 0.002, r^2 = 0.58, P = 0.002$). Thus, the upper-elevation populations in SL were more genetically similar to the BP populations than the lower-elevation populations in SL. These populations are the closest to the BP populations (Fig. 1).

Differentiation among Willow Species. -At one of the localities in Big Pine Creek (BPf), I collected C. aeneicollis individuals from four neighboring willows of two species: two S. boothi individuals and two S. orestera individuals. To determine whether C. aeneicollis populations on different species were genetically differentiated, I used a different hierarchical F statistic (F_{SL}). First, I calculated F_{WL} for each species separately, then I pooled the genotype frequencies for each species and obtained F_{SL} for the pooled estimate. Although the sample size for any comparison of among-willow differentiation versus among-species differentiation is small, this technique would detect substantial genetic divergence. For the beetles collected on S. boothi, the jackknife estimate of $F_{\rm WL}$ was 0.053 \pm 0.010, and for the beetles collected on S. orestera, the estimate

was 0.000 ± 0.003 . The hierarchical $F_{\rm SL}$ was 0.040 ± 0.009 , which is smaller than the jackknife estimate of $F_{\rm WL}$ for *S. boothi* alone. If populations on different species were subdivided, one would expect the hierarchical $F_{\rm SL}$ values to exceed the values for $F_{\rm WL}$ within each species (McPheron et al., 1988). Thus, my results indicated no differentiation among host species for *C. aeneicollis*.

DISCUSSION

Chrysomela aeneicollis populations are indeed subdivided among drainages. The level of genetic subdivision ($F_{\rm DT} = 0.043$) among these nearby drainages is higher than the F_{ST} values across broad geographic scales for many flying insects, including bark beetles, Drosophila spp., and several lepidopterans (McCauley and Eanes, 1987). The F_{ST} value for *Plagiodera versicolor* populations from Virginia to Illinois is 0.057 (McCauley et al., 1988). Chrysomela aeneicollis's relatively higher levels of differentiation may result from the fact that this is a native species that has presumably been in the eastern Sierra Nevada for much longer than the length of time that the introduced P. versicolor has been in North America. However, it is also clear that C. aeneicollis's population subdivision is also greatly affected by the topographic relief of the eastern Sierra Nevada.

Despite the among-drainage differentiation, the PC analysis suggested that there is gene flow over the Sierra crest. Although the streams are connected by nearly continuous stands of willow at the lower elevations, these areas appear to be very unsuitable habitats for C. aeneicollis; over seven years of research I never discovered a population below 2,300 meters. Thus, it appears that most of the gene flow among drainages occurs over the ridges rather than along the streams. This gene flow has another result; it is probably responsible for the greater F_{LD} values observed in the SL drainage than in the other two drainages. If this drainage had been examined alone, the high $F_{\rm LD}$ among the SL populations may have been erroneously attributed to genetic drift. Finally, these results illustrate that gene flow can be a "creative force" as described by Slatkin (1987). The variability at the pgi-1

locus is highest in the SL populations because both of the common alleles are present at high frequencies there.

Previous studies have indicated that natural selection is acting on enzyme loci in herbivorous insects; Slatkin (1987) discusses an example in the butterfly Euphydryas editha, where F_{ST} at hexokinase was substantially greater than at other loci. Additionally, natural selection on pgi has been demonstrated for Colias butterflies (Watt, 1977; Watt et al., 1983, 1985). However, this is the first observation that natural selection is probably acting on *pgi* in a beetle. In the case of *Colias*, differential temperature sensitivities of the different pgi enzymes form the basis for natural selection. The *pgi* genotype affects the timing of flight activity. It is possible that different *pgi-1* genotypes vary in their temperature sensitivity for C. aeneicollis. Further investigation is required to determine the significance of this unusual pattern of differentiation at pgi-1.

Differentiation among localities within a drainage has implications for local adaptation in C. aeneicollis. Environmental conditions vary with elevation along all three of these drainages. For example, Smiley and Rank (1986) documented a reduction in levels of predation on C. aeneicollis with increasing elevation along Big Pine Creek. In addition, Smiley and Rank (1986) reported phenotypic differences in larval growth rates among populations from high versus low elevations. Similarly, McCauley et al. (1988) demonstrated spatial and temporal differences in average relatedness among populations of *P. versicolor*. The results of this study suggest that C. aeneicollis populations are sufficiently isolated to allow for local adaptation to this environmental variation. Genetic divergence among these populations at other loci that are under natural selection may be even greater than divergence at the relatively neutral allozyme loci (Slatkin, 1987).

At the lowest level of population structure, differentiation among trees within a locality, these results parallel those of McCauley et al. (1988), who observed significant differentiation among trees in two of eight cases for *P. versicolor*. In both studies, the among-tree $F_{\rm ST}$ varied considerably among localities. It is possible that amongtree differentiation may reflect differentiation at an even smaller scale, i.e., within small groups of trees in a locality. This seems unlikely however, because there was no relationship between the distance between willows in a locality and F_{WL} . It is also unlikely that the among-tree differentiation reflects among-branch differentiation as Guttman et al. (1989) observed for treehoppers, or a Wahlund effect resulting from the combination of samples of several breeding colonies, or inbreeding, as Crouau-Roy (1988) suggested for cave-dwelling beetles. Amongbranch differentiation is unlikely because the willows are relatively small, and because C. aeneicollis individuals move about considerably within a willow. A Wahlund effect is unlikely because most of the willows appear to be in HWE, and inbreeding appears to be rare in C. aeneicollis.

In some cases, the among-tree differentiation may have been based on sampling a few families on individual willows. As noted above, the willows sampled were occasionally relatively small, and because females lay eggs in clutches of 30 eggs, some trees may have consisted of only a few families. This was apparently the case on willow RV2 at locality SLe, where one locus indicated a deficit of heterozygotes and another indicated an excess, which would occur if many of the individuals came from an individual family. Family group sampling may also have occurred at localities (BPb, BPf, RCb, RCc) where some of the willows were relatively small and beetle population sizes were low. On the other hand, other localities with among-tree differentiation (BPd, BPf, SLc) consisted of larger willows with larger population sizes. In these cases, it is most likely that the among-tree differentiation reflects genetic drift among C. aeneicollis populations on different willows. Thus, overall genetic subdivision at this scale may be influenced by founder effects as well as some genetic drift following establishment, as McCauley and Eanes (1987) concluded for the milkweed beetle Tetraopes tetraophthalmus.

In conclusion, these results represent yet another example of an herbivorous insect that shows significant genetic subdivision at small spatial scales down to individual host plants. This phenomenon has been observed over a broad range of taxonomic groups, including treehoppers (Guttman and Weigt, 1989; Guttman et al., 1989), milkweed beetles (McCauley and Eanes, 1987), willow leaf beetles (McCauley et al., 1988), and Rhagoletis fruit flies (McPheron et al., 1988; Feder et al., 1990a, 1990b). It appears that the association with patchily distributed host plants has important consequences for the subsequent evolution of herbivores whose vagility is limited. Indeed, if a subdivided population structure is combined with phenological differences among host plants, it may lead to host-race formation and sympatric speciation (Courtney Smith, 1988; Feder et al., 1990a, 1990b; Wood and Keese, 1990; Wood et al., 1990). In the absence of differences in willow phenology and host-preference among C. aenei*collis* populations that occur on different hosts (Rank, 1990), host-race formation appears unlikely in this species despite its pronounced genetic subdivision.

ACKNOWLEDGMENTS

I thank B. Shaffer for suggesting this study, and J. Smiley for getting me interested in willow beetles. J. Clark, B. Shaffer, and A. Guerrera assisted the author with the electrophoresis. H. Dingle, B. Shaffer, and J. Smiley made useful comments on an earlier version of this manuscript, and J. Schmitt, W. Watt, and an anonymous reviewer's comments improved it greatly. T. Holtsford kindly provided his FORTRAN program to calculate the F statistics. This research was supported by a NSF dissertation improvement grant (BSR-8714734), by the White Mountain Research Station, and by the Center for Population Biology at the University of California, Davis.

LITERATURE CITED

- AYALA, F. J., J. R. POWELL, M. L. TRACEY, C. A. MOURAO, AND S. PEREZ-SALAS. 1972. Enzyme variability in the Drosophila willistonii group. IV. Genetic variation in natural populations of Drosophila willistonii. Genetics 70:113–139.
- BROWN, W. J. 1956. The New World species of *Chrysomela* L. (Coleoptera: Chrysomelidae). Can. Entomol. 88, Suppl. 3. 1–54.
- COURTNEY SMITH, D. 1988. Heritable divergence of *Rhagoletis pomonella* host races by seasonal asynchrony. Nature 336:66–67.
- CROUAU-ROY, B. 1988. Genetic structure of cave-

dwelling beetles populations: significant deficiencies of heterozygotes. Heredity 60:321-327.

- FEDER, J. L., C. A. CHILCOTE, AND G. L. BUSH. 1990a. Regional, local, and microgeographic allele frequency variation between apple and hawthorn populations of *Rhagoletis pomonella* (Diptera: Tephritidae) in the Eastern United States and Canada. Evolution 44:570–594.
 - -----. 1990b. The geographic pattern of genetic differentiation between host-associated populations of *Rhagoletis pomonella* (Diptera: Tephritidae) in the Eastern United States and Canada. Evolution 44: 595–608.
- GUTTMAN, S. I., AND L. A. WEIGT. 1989. Macrogeographic genetic variation in the *Enchenopa binotata* complex (Homoptera: Membracidae). Ann. Entomol. Soc. Am. 82:225–231.
- GUTTMAN, S. I., T. WILSON, AND L. A. WEIGT. 1989. Microgeographic genetic variation in the *Encheno*pa binotata complex (Homoptera: Membracidae). Ann. Entomol. Soc. Am. 82:156–165.
- HARRIS, H., AND D. A. HOPKINSON. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Elsevier, N.Y., USA.
- HARTL, D. L., AND A. G. CLARK. 1989. Principles of Population Genetics. Sinauer, Sunderland, MA USA.
- LANGERCRANTZ, U., AND N. RYMAN. 1990. Genetic structure of Norway Spruce (*Picea abies*): Concordance of morphological and allozymic variation. Evolution 44:38–53.
- MCCAULEY, D. E., AND W. F. EANES. 1987. Hierarchical population structure analysis of the milkweed beetle, *Tetraopes tetraophthalmus* (Forster). Heredity 58:193–201.
- McCAULEY, D. E., M. J. WADE, F. J. BREDEN, AND M. WOHLTMAN. 1988. Spiral and temporal variation in group relatedness: Evidence from the imported willow leaf beetle. Evolution 42:184–192.
- MCPHERON, B. A., D. COURTNEY SMITH, AND S. H. BERLOCHER. 1988. Genetic differences between host races of *Rhagoletis pomonella*. Nature 336:64– 66.
- MURPHY, R. W., J. W. SITES, D. G. BUTH, AND C. H. HAUFLER. 1990. Proteins I: Isozyme electrophoresis, pp. 45–126. In D. M. Hillis and C. Moritz (eds.), Molecular Systematics. Sinauer, Sunderland, MA USA.
- PASTEELS, J. M., M. ROWELL-RAHIER, AND M. J. RAUPP. 1988. Plant-derived defense in Chrysomelid beetles, pp. 235–271. *In* P. Barbosa and D. Letourneau (eds.), Novel Aspects of Insect-plant Interactions. Wiley, N.Y., USA.
- RANK, N. E. 1990. Ecological determinants of host plant use and migrogeographic genetic differentiation in a willow leaf beetle *Chrysomela aeneicollis*

(Schaeffer). Ph.D. Diss. Univ. of California, Davis, USA.

- RAUPP, M. J., AND R. F. DENNO. 1983. Leaf age as a predictor of herbivore distribution and abundance, pp. 91–124. *In* R. F. Denno and M. S. Mc-Clure, (eds.) Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, N.Y., USA.
- RICE, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225.
- ROWELL-RAHIER, M. 1984. The food plant preferences of *Phratora vitellinae* (Coleoptera: Chrysomelidae). A: Field observations. Oecologia 64:369–374.
- SLATKIN, M. 1987. Gene flow and the geographic structure of natural populations. Science 236:787– 792.
- SLATKIN, M., AND N. H. BARTON. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368.
- SMILEY, J. T., AND N. E. RANK. 1986. Predator protection versus rapid growth in a montane leaf beetle. Oecologia 70:106–112.
- SWOFFORD, D. L., AND R. B. SELANDER. 1981. BIO-SYS-1: A Fortran computer program for the analysis of allelic variation in genetics. J. Hered. 72: 281–283.
- WATT, W. B. 1977. Adaptation at specific loci. 1. Natural selection on *phosphoglucose isomerase* of *Colias* butterflies: Biochemical and population aspects. Genetics 87:177–194.
- WATT, W. B., P. A. CARTER, AND S. M. BLOWER. 1985. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of *Colias* butterflies. Genetics 109:157–175.
- WATT, W. B., R. C. CASSIN, AND M. S. SWAN. 1983. Adaptation at specific loci. III. Field behavior and survivorship differences among *Colias pgi* genotypes are predictable from *in vitro* biochemistry. Genetics 103:725–729.
- WEIR, B. S., AND C. C. COCKERHAM. 1984. Estimating *F*-statistics for the analysis of population structure. Evolution 38:1358–1370.
- WOOD, T. K., AND M. C. KEESE. 1990. Host-plantinduced assortative mating in *Enchenopa* treehoppers. Evolution 44:619–628.
- WOOD, T. K., K. L. OLMSTEAD, AND S. I. GUTTMAN. 1990. Insect phenology mediated by host-plant water relations. Evolution 44:629–636.
- WRIGHT, S. 1978. Evolution and the genetics of populations. Vol. 4. Variability Within and Among Natural Populations. Univ. of Chicago Press, Chicago, IL USA.

Corresponding Editor: J. Schmitt

			HB3	27	0.85	30	0.3	١	0.27	0.43	30	0.38	0.62	I	30	0.07	I	I	0.93	I	30	0.3	I	I	0.62	0.03	0.05	1
		BPc	HB2	33	0.94	34	0.47	I	0.16	0.37	34	0.52	0.49	I	34	0.12	I	I	0.88	I	34	0.15	I	I	0.79	I	0.06	I
			HBI	22	0.98	22	0.41	I	0.18	0.41	22	0.48	0.52	I	22	0.23	I	I	0.77	I	22	0.52	I	0.09	0.36	I	I	0.02
			FL3	7	1	7	0.21	I	0.43	0.36	7	0.36	0.64	I	7	0.21	١	I	0.79	ł	7	0.21	I	I	0.71	١	I	0.07
		BPb	FL2	18	0.72	18	0.75	I	I	0.25	18	0.19	0.81	I	18	0.03	I	I	0.97	I	18	0.31	I	I	0.44	0.25	I	I
ality			FLI	21	0.86	21	0.83	I	0.17	I	21	0.31	0.69	I	21	0.21	I	I	0.79	I	21	0.6	0.02	I	0.31	0.07	I	I
Loc		Willow	BLT6	13	0.73	61	0.53	I	0.08	0.4	18	0.53	0.47	I	61	0.32	I	I	0.68	I	61	0.29	I	I	0.66	I	0.03	0.03
			BLT5	49	0.88	49	0.5	I	0.17	0.33	48	0.53	0.47	I	50	0.28	I	ł	0.72	I	50	0.26	I	I	0.61	I	0.04	0.09
	Pa		BLT4	24	0.9	24	0.4	I	0.29	0.31	20	0.5	0.5	I	24	0.21	I	I	0.79	I	24	0.23	0.04	I	0.54	0.02	0.06	0.1
	B		BLT3	37	0.89	38	0.37	I	0.25	0.38	38	0.46	0.54	I	39	0.19	I	I	0.81	I	39	0.27	0.06	0.01	0.63	0.01	0.01	1
			BLT2	20	0.9	20	0.48	I	0.23	0.3	20	0.5	0.5	I	20	0.25	I	I	0.75	I	20	0.33	I	I	0.63	0.03	I	0.03
			BLT1	25	0.88	27	0.5	I	0.22	0.28	27	0.57	0.43	Ι	27	0.26	I	I	0.74	Ι	27	0.24	I	0.02	0.65	0.02	0.04	0.04
		Locus and	Allele	ak-1	2	idh-2	1	7	ŝ	4	I -idm	1	2	e	pgi-1	1	7	m	4	S	l-mgq	1	2	ŝ	4	5	9	۲

LEAF BEETLE GENETIC DIFFERENTIATION

		FT2	8	0.93	×	0.55	I	0.36	60.0	8	0.45	0.55	I	8	0.21	I	I	0.79	I	8	0.48	0.02	0.02	0.46	I	I	0.02
		FTI	52	0.7	52	0.4	I	0.2	0.4	52	0.6	0.4	I	52	I	I	I	1	I	52	0.5	I	I	0.5	I	I	I
		PB13	23	0.98	23	0.52	I	0.15	0.33	23	0.46	0.54	I	23	0.02	I	I	0.98	I	23	0.24	0.02	I	0.65	0.02	0.07	I
	DD	PB11	35	0.94	35	0.46	I	0.23	0.31	35	0.5	0.5	I	35	0.2	I	I	0.8	I	35	0.34	I	0.1	0.5	0.06	I	I
		PB 10	37	0.92	37	0.61	I	0.12	0.27	37	0.51	0.49	I	37	0.31	I	I	0.69	I	37	0.34	I	I	0.65	I	0.01	I
ality		KB3	51	0.86	51	0.28	I	0.35	0.36	51	0.57	0.43	I	51	0.19	I	I	0.76	0.06	51	0.35	0.02	I	0.61	I	0.01	0.01
Loc		Willow KB2	28	0.95	31	0.32	I	0.27	0.4	29	0.28	0.72	I	31	0.39	I	I	0.6	0.02	31	0.27	Ι	I	0.71	I	I	0.02
		KBI	21	0.88	22	0.59	I	0.16	0.25	22	0.75	0.25	I	22	0.09	I	I	0.91	I	22	0.27	I	I	0.55	0.11	0.05	0.02
	BPd	U4	22	0.89	22	0.52	Ι	0.34	0.14	22	0.46	0.55	I	22	0.34	I	I	0.66	I	22	0.21	0.02	I	0.61	0.07	0.07	0.02
		U3	33	0.99	34	0.49	I	0.28	0.24	34	0.52	0.49	I	34	0.38	I	I	0.62	I	34	0.18	0.03	0.02	0.72	0.04	0.02	I
		U2	30	0.93	33	0.55	I	0.24	0.21	32	0.55	0.45	I	33	0.23	I	I	0.77	I	33	0.14	0.03	0.02	0.76	0.05	0.02	I
		IJ	38	0.96	38	0.62	I	0.24	0.15	38	0.5	0.5	I	38	0.16	I	I	0.84	I	38	0.2	0.07	I	0.61	0.03	0.07	0.04
		Locus and Allele	ak-1	7	idh-2	1	7	ę	4	I-ian	1	2	ŝ	pgi-1	1	7	ę	4	5	pgm-1	-	2	ę	4	5	9	7

APPENDIX 1. Extended.

1108

NATHAN EGAN RANK

	RC3	13	1	14	0.57	I	0.04	0.39	14	0.18	0.82	١	14	1	١	I	١	١	14	I	1	١	0.68	1	0.32	١
ča	RC2	14	0.96	14	0.39	I	0.29	0.32	14	0.04	0.86	0.11	14	0.86	0.04	I	0.11	I	14	I	I	I	0.71	I	0.29	I
	RCI	10	0.95	10	0.45	I	١	0.55	10	0.1	0.75	0.15	10	0.85	0.15	١	ł	1	10	١	١	١	0.55	١	0.45	١
	FB4	24	0.81	24	0.4	I	0.29	0.31	23	0.48	0.52	I	24	0.1	I	I	0.88	0.02	24	0.38	0.04	0.04	0.5	ł	0.04	I
	FB3	15	0.93	15	0.37	I	0.23	0.4	15	0.5	0.5	I	15	0.13	I	I	0.87	I	15	0.33	0.03	0.03	0.53	0.03	0.03	I
дя	FB2	6	1	6	0.33	I	0.28	0.39	6	0.5	0.5	I	6	0.22	I	I	0.72	0.06	6	0.5	I	I	0.39	0.11	I	I
	FBI	5	0.9	5	0.6	I	0.1	0.3	4	0.38	0.63	I	4	0.13	1	I	0.88	I	4	0.13	I	I	0.5	0.38	I	I
	Willow FW8	35	0.94	35	0.49	I	0.2	0.31	35	0.47	0.53	I	35	0.14	I	I	0.84	0.01	35	0.23	0.04	I	0.56	0.03	0.14	I
	FW6	11	1	11	0.36	I	0.5	0.14	11	0.5	0.5	I	11	0.14	I	I	0.86	I	11	0.14	0.05	I	0.77	I	0.05	I
Į	FW5	50	0.92	50	0.5	I	0.22	0.28	50	0.66	0.34	I	50	0.15	I	١	0.85	I	50	0.34	0.07	I	0.5	ł	0.09	ł
BF	FW2	31	0.9	31	0.57	I	0.32	0.11	31	0.48	0.52	I	31	0.48	I	I	0.5	0.02	31	0.23	0.05	I	0.66	0.05	0.02	I
	S011	25	0.92	25	0.56	I	0.1	0.34	25	0.46	0.54	I	25	0.04	1	I	0.96	I	25	0.28	0.02	0.02	0.58	0.02	I	0.08
	SO10	18	0.94	18	0.53	I	0.06	0.42	18	0.58	0.58	I	18	0.08	I	I	0.92	I	18	0.25	I	0.03	0.72	I	I	I
	Locus and Allele	ak-1	2	idh-2	1	2	ę	4	I-idm	1	7	ς	pgi-1	1	2	ŝ	4	5	pgm-1	1	7	ę	4	5	9	7
	BPF	BPr BPr Locus and BPg RCa Allele SO10 SO11 FW2 FW6 FW8 FB1 FB2 FB3 FB4 RC1 RC3 RC3	Locus and Allele BPr BPs RCa Locus and Allele S010 S011 FW2 FW6 Willow FB1 FB2 FB3 FB4 RC1 RCa ak-1 18 25 31 50 11 35 5 9 15 24 10 14 13	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

			PL3	54	0.93	54	0.44	I	0.3	0.27	54	0.4	0.52	0.08	54	0.68	I	I	0.32	I	54	0.2	0.02	I	0.69	ł	0.04	0.05
		SLa	PL2	53	0.96	55	0.29	0.05	0.29	0.37	55	0.39	0.6	0.01	56	0.34	0.02	0.01	0.63	0.01	55	0.08	0.02	I	0.8	I	0.06	0.05
			PLI	46	0.99	48	0.55	0.02	0.22	0.21	46	0.41	0.51	0.08	48	0.44	0.01	I	0.55	I	48	0.14	1	0.03	0.71	0.01	0.04	0.07
			RC14	28	1	30	0.37	I	0.05	0.58	30	0.17	0.83	I	30	I	Ι	I	I	I	30	I	ļ	I	0.77	I	0.23	Ι
		RCc	RC13	7	1	8	0.25	I	I	0.75	8	0.69	0.31	İ	8	1	Ι	I	I	I	8	I	I	I	0.38	I	0.63	I
			RC12	14	0.89	14	0.36	I	0.25	0.39	14	0.18	0.61	0.21	14	1	I	I	I	I	14	I	I	I	0.96	I	0.04	I
Locality			RC11	20	1	21	0.52	I	0.17	0.31	21	0.24	0.76	I	21	0.98	1	I	0.02	I	21	I	I	I	0.33	I	0.67	1
		Willow	RC9	25	0.78	33	0.49	0.02	0.09	0.41	32	0.17	0.83	I	33	0.97	ļ	I	0.03	I	33	I	I	I	0.7	I	0.3	I
			RC8	14	0.93	18	0.39	I	I	0.61	18	0.28	0.64	0.08	18	0.89	0.08	I	0.03	I	18	I	I	I	0.75	I	0.25	I
	RCb		RC7	15	1	16	0.22	I	0.03	0.75	15	0.3	0.6	0.1	16	0.84	0.16	1	1	1	16	0.06	1	1	0.53	I	0.41	I
			RC6	21	0.67	23	0.37	I	I	0.63	22	0.32	0.61	0.07	23	0.91	I	I	0.09	I	23	1	1	1	0.8	I	0.2	1
			RC5	5	1	9	0.33	I	0.08	0.58	5	0.1	0.9	I	9	0.92	0.08	I	1	I	9	1	1	1	0.83	I	0.17	I
			RC4	51	0.97	51	0.25	0.11	0.11	0.54	46	0.35	0.6	0.05	51	1	I	1	I	I	51	I	I	I	0.88	I	0.12	1
	I	- Locus and	Allele	ak-1	2	idh-2	1	2	ę	4	mpi-1	1	7	3	pgi-1	1	2	ŝ	4	5	l-mgq	1	2	ŝ	4	5	9	7

APPENDIX 1. Extended.

1110

NATHAN EGAN RANK

						Locality					
		SLb		SI	3						
Locus and					Willow	S	Ld		S	e le	
Allele	SCI	SC2	SC3	HSC1	HSC2	SL1	SL2	PCI	PC4	RVI	RV2
ak-1	50	36	49	27	50	20	23	31	33	10	21
2	0.92	1	1	0.96	0.99	1	0.94	0.98	0.91	1	1
idh-2	51	36	51	27	52	20	24	31	37	10	21
1	0.42	0.42	0.78	0.59	0.71	0.4	0.33	0.68	0.51	0.4	0.31
2	I	I	I	I	0.01	I	I	0.15	1	0.1	0.48
Э	0.26	0.35	0.13	0.13	0.08	0.1	0.08	0.11	0.22	0.05	I
4	0.32	0.24	0.1	0.28	0.2	0.5	0.58	0.07	0.27	0.45	0.21
I-idm	51	36	51	27	52	19	24	31	37	10	21
1	0.47	0.31	0.35	0.57	0.49	0.4	0.44	0.26	0.31	0.35	0.45
2	0.53	0.67	0.64	0.43	0.42	0.61	0.56	0.66	0.68	0.65	0.55
n	1	0.03	0.01	I	0.09	1	I	0.08	0.01	I	I
pgi-1	51	36	51	27	52	20	24	31	37	10	21
1	0.37	0.47	0.54	0.32	0.4	0.6	0.65	0.87	0.49	1	0.74
2	1	I	I	1	1	1	1	1	0.01	1	1
m	1	I	1	1	1	1	1	1	I	1	1
4	0.63	0.53	0.46	0.69	0.59	0.4	0.35	0.13	0.5	I	0.26
5	1	I	1		0.01	1	1	I	I	1	1
pgm-1	51	36	51	27	52	20	24	31	37	10	21
1	0.21	0.1	0.08	0.06	0.08	0.13	0.13	0.02	0.3	I	1
2	0.11	0.13	0.03	1	0.14	0.05	0.08	1	I	I	1
ę	0.01	0.03	I	0.07	0.04	I	0.02	1	I	I	1
4	0.65	0.57	0.86	0.59	0.61	0.73	0.71	0.73	0.58	0.7	0.55
5	I	1	1	0.04	I	I	I	1	I	I	1
9	0.02	0.11	0.02	0.2	0.08	0.1	0.06	0.26	0.1	0.3	0.45
7	0.01	0.07	0.01	0.04	0.06	I	1	I	0.03	1	1

APPENDIX 1. Extended.

LEAF BEETLE GENETIC DIFFERENTIATION